Study Overview
This report presents the results of four Generalized Linear Mixed
Models (GLMMs) examining predictive processing in emotion recognition
using a confidence weighting task.
Participants: 202 subjects
Total Trials: 53,592 (48,199 after filtering)
Task: Predict emotional faces (Happy/Angry) based on
visual cues in a reversal learning paradigm
Experimental Design
- Trial Validity: Valid vs Invalid vs Non-predictive
trials
- Stimulus Noise: High noise (ambiguous) vs Low noise
(clear) faces
- Learning: Trials since reversal (learning
dynamics)
- Face Emotion: Happy vs Angry faces
Model Results
1. Accuracy Model (High Noise Trials Only)
Research Question: How does trial validity and
learning affect accuracy in high-noise trials?
Model Specification:
Accuracy ~ TrialValidity2_numeric * TrialsSinceRev_scaled * FaceEmot + (1 | SubNo)
Family: binomial(link = "logit")
Data: High noise trials only
Accuracy Model Coefficients
|
Parameter
|
Estimate
|
Std. Error
|
z-value
|
p-value
|
Significance
|
(Intercept)
|
(Intercept)
|
0.9591
|
0.0411
|
23.331
|
2.15e-120
|
***
|
TrialValidity2_numeric
|
TrialValidity2_numeric
|
0.1400
|
0.0278
|
5.027
|
4.99e-07
|
***
|
TrialsSinceRev_scaled
|
TrialsSinceRev_scaled
|
-0.0059
|
0.0250
|
-0.236
|
0.81308
|
|
FaceEmotHappy
|
FaceEmotHappy
|
-0.2458
|
0.0344
|
-7.142
|
9.2e-13
|
***
|
TrialValidity2_numeric:TrialsSinceRev_scaled
|
TrialValidity2_numeric:TrialsSinceRev_scaled
|
0.0594
|
0.0273
|
2.175
|
0.029615
|
|
TrialValidity2_numeric:FaceEmotHappy
|
TrialValidity2_numeric:FaceEmotHappy
|
-0.0328
|
0.0387
|
-0.847
|
0.39721
|
|
TrialsSinceRev_scaled:FaceEmotHappy
|
TrialsSinceRev_scaled:FaceEmotHappy
|
0.0580
|
0.0350
|
1.657
|
0.097536
|
.
|
TrialValidity2_numeric:TrialsSinceRev_scaled:FaceEmotHappy
|
TrialValidity2_numeric:TrialsSinceRev_scaled:FaceEmotHappy
|
-0.0293
|
0.0383
|
-0.765
|
0.4441
|
|
Key Findings: - ✅ Trial Validity:
Valid trials show significantly higher accuracy (z = 5.03, p < 0.001)
- ❌ Face Emotion: Happy faces show lower accuracy than
angry faces (z = -7.14, p < 0.001) - 🔄 Learning:
Trial validity effects change with learning (interaction: z = 2.18, p =
0.030)
Interpretation: Participants are more accurate when
cues correctly predict the face emotion, but this effect changes over
time as they learn the task contingencies.
Accuracy Model Predictions: Trial Validity ×
Trials Since Reversal × Face Emotion
2. Choice Model (High Noise Trials Only)
Research Question: How do signaled faces and actual
emotions influence choice behavior?
Model Specification:
FaceResponse ~ SignaledFace * FaceEmot * TrialsSinceRev_scaled + (1 | SubNo)
Family: binomial(link = "logit")
Data: High noise trials only
Choice Model Coefficients
|
Parameter
|
Estimate
|
Std. Error
|
z-value
|
p-value
|
Significance
|
(Intercept)
|
(Intercept)
|
-0.9825
|
0.0905
|
-10.857
|
1.84e-27
|
***
|
SignaledFaceAngry
|
SignaledFaceAngry
|
-0.2770
|
0.0530
|
-5.228
|
1.72e-07
|
***
|
FaceEmotHappy
|
FaceEmotHappy
|
1.9465
|
0.0535
|
36.379
|
9.01e-290
|
***
|
TrialsSinceRev_scaled
|
TrialsSinceRev_scaled
|
0.1316
|
0.0456
|
2.888
|
0.0038827
|
**
|
SignaledFaceAngry:FaceEmotHappy
|
SignaledFaceAngry:FaceEmotHappy
|
0.0174
|
0.0731
|
0.238
|
0.81193
|
|
SignaledFaceAngry:TrialsSinceRev_scaled
|
SignaledFaceAngry:TrialsSinceRev_scaled
|
-0.2183
|
0.0533
|
-4.096
|
4.21e-05
|
***
|
FaceEmotHappy:TrialsSinceRev_scaled
|
FaceEmotHappy:TrialsSinceRev_scaled
|
-0.0274
|
0.0520
|
-0.527
|
0.59788
|
|
SignaledFaceAngry:FaceEmotHappy:TrialsSinceRev_scaled
|
SignaledFaceAngry:FaceEmotHappy:TrialsSinceRev_scaled
|
0.1456
|
0.0743
|
1.960
|
0.050027
|
.
|
Key Findings: - 🎯 Signaled Face:
Angry signaled faces reduce choice of angry (z = -5.23, p < 0.001) -
😊 Actual Emotion: Happy faces strongly predict happy
choices (z = 36.38, p < 0.001) - 🔄 Learning:
Learning effects interact with signaled face (z = -4.10, p <
0.001)
Interpretation: Participants use predictive cues to
guide their choices, but also respond strongly to the actual face
emotion. Learning modulates these effects.
Choice Model Predictions: Signaled Face × Face
Emotion × Trials Since Reversal
3. Response Time Model (All Trials)
Research Question: How do stimulus noise and trial
validity affect response times?
Model Specification:
ResponseRT ~ StimNoise * TrialValidity2_numeric * TrialsSinceRev_scaled + (1 | SubNo)
Family: Gamma(link = "log")
Data: All trials
Response Time Model Coefficients
|
Parameter
|
Estimate
|
Std. Error
|
z-value
|
p-value
|
Significance
|
(Intercept)
|
(Intercept)
|
-0.3987
|
0.0155
|
-25.745
|
3.69e-146
|
***
|
StimNoisehigh noise
|
StimNoisehigh noise
|
0.3234
|
0.0046
|
70.345
|
0e+00
|
***
|
TrialValidity2_numeric
|
TrialValidity2_numeric
|
-0.0212
|
0.0036
|
-5.875
|
4.23e-09
|
***
|
TrialsSinceRev_scaled
|
TrialsSinceRev_scaled
|
0.0063
|
0.0033
|
1.919
|
0.054946
|
.
|
StimNoisehigh noise:TrialValidity2_numeric
|
StimNoisehigh noise:TrialValidity2_numeric
|
0.0081
|
0.0051
|
1.584
|
0.11322
|
|
StimNoisehigh noise:TrialsSinceRev_scaled
|
StimNoisehigh noise:TrialsSinceRev_scaled
|
0.0064
|
0.0047
|
1.369
|
0.1709
|
|
TrialValidity2_numeric:TrialsSinceRev_scaled
|
TrialValidity2_numeric:TrialsSinceRev_scaled
|
-0.0117
|
0.0036
|
-3.259
|
0.0011171
|
**
|
StimNoisehigh noise:TrialValidity2_numeric:TrialsSinceRev_scaled
|
StimNoisehigh noise:TrialValidity2_numeric:TrialsSinceRev_scaled
|
0.0014
|
0.0051
|
0.278
|
0.78069
|
|
Key Findings: - ⏱️ Stimulus Noise:
High noise trials show significantly longer RTs (z = 70.35, p <
0.001) - ⚡ Trial Validity: Invalid trials show shorter
RTs (z = -5.87, p < 0.001) - 🔄 Learning: Validity
effects change with learning (interaction: z = -3.26, p = 0.001)
Interpretation: Task difficulty (noise) increases
response times, while invalid trials (surprising outcomes) lead to
faster responses, possibly due to surprise or reduced confidence.
Response Time Model Predictions: Stimulus Noise
× Trial Validity × Trials Since Reversal
4. Confidence Model (All Trials)
Research Question: How do trial validity and
stimulus noise affect confidence ratings?
Model Specification:
RawConfidence ~ TrialValidity2_numeric * StimNoise * TrialsSinceRev_scaled + FaceEmot + (1 | SubNo)
Family: Beta(link = "logit")
Data: All trials
Confidence Model Coefficients
|
Parameter
|
Estimate
|
Std. Error
|
z-value
|
p-value
|
Significance
|
(Intercept)
|
(Intercept)
|
1.7431
|
0.0469
|
37.162
|
2.84e-302
|
***
|
TrialValidity2_numeric
|
TrialValidity2_numeric
|
0.0284
|
0.0109
|
2.599
|
0.0093527
|
**
|
StimNoisehigh noise
|
StimNoisehigh noise
|
-1.6377
|
0.0129
|
-127.096
|
0e+00
|
***
|
TrialsSinceRev_scaled
|
TrialsSinceRev_scaled
|
-0.0216
|
0.0097
|
-2.217
|
0.026643
|
|
FaceEmotHappy
|
FaceEmotHappy
|
0.1744
|
0.0095
|
18.352
|
3.21e-75
|
***
|
TrialValidity2_numeric:StimNoisehigh noise
|
TrialValidity2_numeric:StimNoisehigh noise
|
-0.0157
|
0.0135
|
-1.161
|
0.24554
|
|
TrialValidity2_numeric:TrialsSinceRev_scaled
|
TrialValidity2_numeric:TrialsSinceRev_scaled
|
0.0372
|
0.0106
|
3.500
|
4.65e-04
|
***
|
StimNoisehigh noise:TrialsSinceRev_scaled
|
StimNoisehigh noise:TrialsSinceRev_scaled
|
0.0099
|
0.0121
|
0.818
|
0.41344
|
|
TrialValidity2_numeric:StimNoisehigh noise:TrialsSinceRev_scaled
|
TrialValidity2_numeric:StimNoisehigh noise:TrialsSinceRev_scaled
|
-0.0208
|
0.0132
|
-1.570
|
0.11636
|
|
Key Findings: - 😰 Stimulus Noise:
High noise trials show significantly lower confidence (z = -127.10, p
< 0.001) - 💪 Trial Validity: Valid trials show
higher confidence (z = 2.60, p = 0.009) - 😊 Face
Emotion: Happy faces show higher confidence (z = 18.35, p <
0.001) - 🔄 Learning: Validity effects change with
learning (interaction: z = 3.50, p < 0.001)
Interpretation: Participants are less confident when
faces are ambiguous (high noise) and more confident when cues correctly
predict outcomes. Happy faces generally elicit higher confidence.
Confidence Model Predictions: Trial Validity ×
Stimulus Noise × Trials Since Reversal
Conclusions
This analysis reveals robust evidence for predictive
processing in emotion recognition:
- Trial validity consistently affects all dependent
measures
- Stimulus noise primarily affects response times and
confidence
- Learning effects are evident across all models
- Face emotion shows consistent effects on choice and
confidence
The results support the hypothesis that participants use
predictive cues to guide their responses, with
learning effects modulating these relationships over
time.
Report generated on 2025-08-06
Analysis: CWT fMRI GLMM Study