Source code for cardioception.HRD.task

# Author: Nicolas Legrand <nicolas.legrand@cas.au.dk>

import pickle
import time
from typing import Optional, Tuple

import numpy as np
import pandas as pd
import pkg_resources  # type: ignore
from systole.detection import ppg_peaks


[docs]def run( parameters: dict, confidenceRating: bool = True, runTutorial: bool = False, ): """Run the Heart Rate Discrimination task. Parameters ---------- parameters : dict Task parameters. confidenceRating : bool Whether the trial show include a confidence rating scale. runTutorial : bool If `True`, will present a tutorial with 10 training trial with feedback and 5 trials with confidence rating. """ from psychopy import core, visual # Initialization of the Pulse Oximeter parameters["oxiTask"].setup().read(duration=1) # Show tutorial and training trials if runTutorial is True: tutorial(parameters) for nTrial, modality, trialType in zip( range(parameters["nTrials"]), parameters["Modality"], parameters["staircaseType"], ): # Initialize variable estimatedThreshold, estimatedSlope = None, None # Wait for key press if this is the first trial if nTrial == 0: # Ask the participant to press default button to start messageStart = visual.TextStim( parameters["win"], height=parameters["textSize"], text=parameters["texts"]["textTaskStart"], ) press = visual.TextStim( parameters["win"], height=parameters["textSize"], pos=(0.0, -0.4), text=parameters["texts"]["textNext"], ) press.draw() messageStart.draw() # Show instructions parameters["win"].flip() waitInput(parameters) # Next intensity value if trialType == "updown": print("... load UpDown staircase.") thisTrial = parameters["stairCase"][modality].next() stairCond = thisTrial[1]["label"] alpha = thisTrial[0] elif trialType == "psi": print("... load psi staircase.") alpha = parameters["stairCase"][modality].next() stairCond = "psi" elif trialType == "CatchTrial": print("... load catch trial.") # Select pseudo-random extrem value based on number # of previous catch trial. catchIdx = sum( parameters["staircaseType"][:nTrial][ parameters["Modality"][:nTrial] == modality ] == "CatchTrial" ) alpha = np.array([-30, 10, -20, 20, -10, 30])[catchIdx % 6] stairCond = "CatchTrial" # Before trial triggers parameters["oxiTask"].readInWaiting() parameters["oxiTask"].channels["Channel_0"][-1] = 1 # Trigger # Start trial ( condition, listenBPM, responseBPM, decision, decisionRT, confidence, confidenceRT, alpha, isCorrect, respProvided, ratingProvided, startTrigger, soundTrigger, responseMadeTrigger, ratingStartTrigger, ratingEndTrigger, endTrigger, ) = trial( parameters, alpha, modality, confidenceRating=confidenceRating, nTrial=nTrial, ) # Check if response is 'More' or 'Less' isMore = 1 if decision == "More" else 0 # Update the UpDown staircase if initialization trial if trialType == "updown": print("... update UpDown staircase.") # Update the UpDown staircase parameters["stairCase"][modality].addResponse(isMore) elif trialType == "psi": print("... update psi staircase.") # Update the Psi staircase with forced intensity value # if impossible BPM was generated if listenBPM + alpha < 15: parameters["stairCase"][modality].addResponse(isMore, intensity=15) elif listenBPM + alpha > 199: parameters["stairCase"][modality].addResponse(isMore, intensity=199) else: parameters["stairCase"][modality].addResponse(isMore) # Store posteriors in list for each trials parameters["staircaisePosteriors"][modality].append( parameters["stairCase"][modality]._psi._probLambda[0, :, :, 0] ) # Save estimated threshold and slope for each trials estimatedThreshold, estimatedSlope = parameters["stairCase"][ modality ].estimateLambda() print( f"... Initial BPM: {listenBPM} - Staircase value: {alpha} " f"- Response: {decision} ({isCorrect})" ) # Store results parameters["results_df"] = pd.concat( [ parameters["results_df"], pd.DataFrame( { "TrialType": [trialType], "Condition": [condition], "Modality": [modality], "StairCond": [stairCond], "Decision": [decision], "DecisionRT": [decisionRT], "Confidence": [confidence], "ConfidenceRT": [confidenceRT], "Alpha": [alpha], "listenBPM": [listenBPM], "responseBPM": [responseBPM], "ResponseCorrect": [isCorrect], "DecisionProvided": [respProvided], "RatingProvided": [ratingProvided], "nTrials": [nTrial], "EstimatedThreshold": [estimatedThreshold], "EstimatedSlope": [estimatedSlope], "StartListening": [startTrigger], "StartDecision": [soundTrigger], "ResponseMade": [responseMadeTrigger], "RatingStart": [ratingStartTrigger], "RatingEnds": [ratingEndTrigger], "endTrigger": [endTrigger], } ), ], ignore_index=True, ) # Save the results at each iteration parameters["results_df"].to_csv( parameters["resultPath"] + "/" + parameters["participant"] + parameters["session"] + ".txt", index=False, ) # Breaks if (nTrial % parameters["nBreaking"] == 0) & (nTrial != 0): message = visual.TextStim( parameters["win"], height=parameters["textSize"], text=parameters["texts"]["textBreaks"], ) percRemain = round((nTrial / parameters["nTrials"]) * 100, 2) remain = visual.TextStim( parameters["win"], height=parameters["textSize"], pos=(0.0, 0.2), text=f" ---- {percRemain} % ---- ", ) remain.draw() message.draw() parameters["win"].flip() parameters["oxiTask"].save( f"{parameters['resultPath']}/{parameters['participant']}_ppg_{nTrial}.txt" ) # Wait for participant input before continue waitInput(parameters) # Fixation cross fixation = visual.GratingStim( win=parameters["win"], mask="cross", size=0.1, pos=[0, 0], sf=0 ) fixation.draw() parameters["win"].flip() # Reset recording when ready parameters["oxiTask"].setup() parameters["oxiTask"].read(duration=1) # Save the final results print("Saving final results in .txt file...") parameters["results_df"].to_csv( parameters["resultPath"] + "/" + parameters["participant"] + parameters["session"] + "_final.txt", index=False, ) # Save the final signals file print("Saving PPG signal data frame...") parameters["signal_df"].to_csv( parameters["resultPath"] + "/" + parameters["participant"] + "_signal.txt", index=False, ) # Save last pulse oximeter recording, if relevant parameters["oxiTask"].save( f"{parameters['resultPath']}/{parameters['participant']}_ppg_{nTrial}_end.txt" ) # Save posterios (if relevant) print("Saving posterior distributions...") for k in set(parameters["Modality"]): np.save( parameters["resultPath"] + "/" + parameters["participant"] + k + "_posterior.npy", np.array(parameters["staircaisePosteriors"][k]), ) # Save parameters print("Saving Parameters in pickle...") save_parameter = parameters.copy() for k in ["win", "heartLogo", "listenLogo", "stairCase", "oxiTask"]: del save_parameter[k] if parameters["device"] == "mouse": del save_parameter["myMouse"] del save_parameter["handSchema"] del save_parameter["pulseSchema"] with open( save_parameter["resultPath"] + "/" + save_parameter["participant"] + "_parameters.pickle", "wb", ) as handle: pickle.dump(save_parameter, handle, protocol=pickle.HIGHEST_PROTOCOL) # End of the task end = visual.TextStim( parameters["win"], height=parameters["textSize"], pos=(0.0, 0.0), text=parameters["texts"]["done"], ) end.draw() parameters["win"].flip() core.wait(3)
[docs]def trial( parameters: dict, alpha: float, modality: str, confidenceRating: bool = True, feedback: bool = False, nTrial: Optional[int] = None, ) -> Tuple[ str, float, float, Optional[str], Optional[float], Optional[float], Optional[float], float, Optional[bool], bool, bool, float, float, float, Optional[float], Optional[float], float, ]: """Run one trial of the Heart Rate Discrimination task. Parameters ---------- parameter : dict Task parameters. alpha : float The intensity of the stimulus, from the staircase procedure. modality : str The modality, can be `'Intero'` or `'Extro'` if an exteroceptive control condition has been added. confidenceRating : boolean If `False`, do not display confidence rating scale. feedback : boolean If `True`, will provide feedback. nTrial : int Trial number (optional). Returns ------- condition : str The trial condition, can be `'Higher'` or `'Lower'` depending on the alpha value. listenBPM : float The frequency of the tones (exteroceptive condition) or of the heart rate (interoceptive condition), expressed in BPM. responseBPM : float The frequency of thefeebdack tones, expressed in BPM. decision : str The participant decision. Can be `'up'` (the participant indicates the beats are faster than the recorded heart rate) or `'down'` (the participant indicates the beats are slower than recorded heart rate). decisionRT : float The response time from sound start to choice (seconds). confidence : int If confidenceRating is *True*, the confidence of the participant. The range of the scale is defined in `parameters['confScale']`. Default is `[1, 7]`. confidenceRT : float The response time (RT) for the confidence rating scale. alpha : int The difference between the true heart rate and the delivered tone BPM. Alpha is defined by the stairCase.intensities values and is updated on each trial. isCorrect : int `0` for incorrect response, `1` for correct responses. Note that this value is not feeded to the staircase when using the (Yes/No) version of the task, but instead will check if the response is `'More'` or not. respProvided : bool Was the decision provided (`True`) or not (`False`). ratingProvided : bool Was the rating provided (`True`) or not (`False`). If no decision was provided, the ratig scale is not proposed and no ratings can be provided. startTrigger, soundTrigger, responseMadeTrigger, ratingStartTrigger,\ ratingEndTrigger, endTrigger : float Time stamp of key timepoints inside the trial. """ from psychopy import core, event, sound, visual # Print infos at each trial start print(f"Starting trial - Intensity: {alpha} - Modality: {modality}") parameters["win"].mouseVisible = False # Restart the trial until participant provide response on time confidence, confidenceRT, isCorrect, ratingProvided = None, None, None, False # Fixation cross fixation = visual.GratingStim( win=parameters["win"], mask="cross", size=0.1, pos=[0, 0], sf=0 ) fixation.draw() parameters["win"].flip() core.wait(np.random.uniform(parameters["isi"][0], parameters["isi"][1])) keys = event.getKeys() if "escape" in keys: print("User abort") parameters["win"].close() core.quit() if modality == "Intero": ########### # Recording ########### messageRecord = visual.TextStim( parameters["win"], height=parameters["textSize"], pos=(0.0, 0.2), text=parameters["texts"]["textHeartListening"], ) messageRecord.draw() # Start recording trigger parameters["oxiTask"].readInWaiting() parameters["oxiTask"].channels["Channel_0"][-1] = 2 # Trigger parameters["heartLogo"].draw() parameters["win"].flip() startTrigger = time.time() # Recording while True: # Read the raw PPG signal from the pulse oximeter # You can adapt these line to work with a different setup provided that # it can measure and create the new variable `bpm` (the average beats per # minute over the 5 seconds of recording). signal = ( parameters["oxiTask"].read(duration=5.0).recording[-75 * 6 :] # noqa ) signal, peaks = ppg_peaks(signal, sfreq=75, new_sfreq=1000, clipping=True) # Get actual heart Rate # Only use the last 5 seconds of the recording bpm = 60000 / np.diff(np.where(peaks[-5000:])[0]) print(f"... bpm: {[round(i) for i in bpm]}") # Prevent crash if NaN value if np.isnan(bpm).any() or (bpm is None) or (bpm.size == 0): message = visual.TextStim( parameters["win"], height=parameters["textSize"], text=parameters["texts"]["checkOximeter"], color="red", ) message.draw() parameters["win"].flip() core.wait(2) else: # Check for extreme heart rate values, if crosses theshold, # hold the task until resolved. Cutoff values determined in # parameters to correspond to biologically unlikely values. if not ( (np.any(bpm < parameters["HRcutOff"][0])) or (np.any(bpm > parameters["HRcutOff"][1])) ): listenBPM = round(bpm.mean() * 2) / 2 # Round nearest .5 break else: message = visual.TextStim( parameters["win"], height=parameters["textSize"], text=parameters["texts"]["stayStill"], color="red", ) message.draw() parameters["win"].flip() core.wait(2) elif modality == "Extero": ########### # Recording ########### messageRecord = visual.TextStim( parameters["win"], height=parameters["textSize"], pos=(0.0, 0.2), text=parameters["texts"]["textToneListening"], ) messageRecord.draw() # Start recording trigger parameters["oxiTask"].readInWaiting() parameters["oxiTask"].channels["Channel_0"][-1] = 2 # Trigger parameters["listenLogo"].draw() parameters["win"].flip() startTrigger = time.time() # Random selection of HR frequency listenBPM = np.random.choice(np.arange(40, 100, 0.5)) # Play the corresponding beat file listenFile = pkg_resources.resource_filename( "cardioception.HRD", f"Sounds/{listenBPM}.wav" ) print(f"...loading file (Listen): {listenFile}") # Play selected BPM frequency listenSound = sound.Sound(listenFile) listenSound.play() core.wait(5) listenSound.stop() else: raise ValueError("Invalid modality") # Fixation cross fixation = visual.GratingStim( win=parameters["win"], mask="cross", size=0.1, pos=[0, 0], sf=0 ) fixation.draw() parameters["win"].flip() core.wait(0.5) ####### # Sound ####### # Generate actual stimulus frequency condition = "Less" if alpha < 0 else "More" # Check for extreme alpha values, e.g. if alpha changes massively from # trial to trial. if (listenBPM + alpha) < 15: responseBPM = 15.0 elif (listenBPM + alpha) > 199: responseBPM = 199.0 else: responseBPM = listenBPM + alpha responseFile = pkg_resources.resource_filename( "cardioception.HRD", f"Sounds/{responseBPM}.wav" ) print(f"...loading file (Response): {responseFile}") # Play selected BPM frequency responseSound = sound.Sound(responseFile) if modality == "Intero": parameters["heartLogo"].autoDraw = True elif modality == "Extero": parameters["listenLogo"].autoDraw = True else: raise ValueError("Invalid modality provided") # Record participant response (+/-) message = visual.TextStim( parameters["win"], height=parameters["textSize"], pos=(0, 0.4), text=parameters["texts"]["Decision"][modality], ) message.autoDraw = True press = visual.TextStim( parameters["win"], height=parameters["textSize"], text=parameters["texts"]["responseText"], pos=(0.0, -0.4), ) press.autoDraw = True # Sound trigger parameters["oxiTask"].readInWaiting() parameters["oxiTask"].channels["Channel_0"][-1] = 3 soundTrigger = time.time() parameters["win"].flip() ##################### # Esimation Responses ##################### ( responseMadeTrigger, responseTrigger, respProvided, decision, decisionRT, isCorrect, ) = responseDecision(responseSound, parameters, feedback, condition) press.autoDraw = False message.autoDraw = False if modality == "Intero": parameters["heartLogo"].autoDraw = False elif modality == "Extero": parameters["listenLogo"].autoDraw = False else: raise ValueError("Invalid modality provided") ################### # Confidence Rating ################### # Record participant confidence if (confidenceRating is True) & (respProvided is True): # Confidence rating start trigger parameters["oxiTask"].readInWaiting() parameters["oxiTask"].channels["Channel_0"][-1] = 4 # Trigger # Confidence rating scale ratingStartTrigger: Optional[float] = time.time() ( confidence, confidenceRT, ratingProvided, ratingEndTrigger, ) = confidenceRatingTask(parameters) else: ratingStartTrigger, ratingEndTrigger = None, None # Confidence rating end trigger parameters["oxiTask"].readInWaiting() parameters["oxiTask"].channels["Channel_0"][-1] = 5 endTrigger = time.time() # Save PPG signal if nTrial is not None: # Not during the tutorial if modality == "Intero": this_df = None # Save physio signal this_df = pd.DataFrame( { "signal": signal, "nTrial": pd.Series([nTrial] * len(signal), dtype="category"), } ) parameters["signal_df"] = pd.concat( [parameters["signal_df"], this_df], ignore_index=True ) return ( condition, listenBPM, responseBPM, decision, decisionRT, confidence, confidenceRT, alpha, isCorrect, respProvided, ratingProvided, startTrigger, soundTrigger, responseMadeTrigger, ratingStartTrigger, ratingEndTrigger, endTrigger, )
[docs]def waitInput(parameters: dict): """Wait for participant input before continue""" from psychopy import core, event if parameters["device"] == "keyboard": while True: keys = event.getKeys() if "escape" in keys: print("User abort") parameters["win"].close() core.quit() elif parameters["startKey"] in keys: break elif parameters["device"] == "mouse": parameters["myMouse"].clickReset() while True: buttons = parameters["myMouse"].getPressed() if buttons != [0, 0, 0]: break keys = event.getKeys() if "escape" in keys: print("User abort") parameters["win"].close() core.quit()
[docs]def tutorial(parameters: dict): """Run tutorial before task run. Parameters ---------- parameters : dict Task parameters. """ from psychopy import core, event, visual # Introduction intro = visual.TextStim( parameters["win"], height=parameters["textSize"], text=parameters["texts"]["Tutorial1"], ) press = visual.TextStim( parameters["win"], height=parameters["textSize"], pos=(0.0, -0.4), text=parameters["texts"]["textNext"], ) intro.draw() press.draw() parameters["win"].flip() core.wait(1) waitInput(parameters) # Pusle oximeter tutorial pulse1 = visual.TextStim( parameters["win"], height=parameters["textSize"], pos=(0.0, 0.3), text=parameters["texts"]["pulseTutorial1"], ) press = visual.TextStim( parameters["win"], height=parameters["textSize"], pos=(0.0, -0.4), text=parameters["texts"]["textNext"], ) pulse1.draw() parameters["pulseSchema"].draw() press.draw() parameters["win"].flip() core.wait(1) waitInput(parameters) # Get finger number - Skip this part for the danish_children version (empty string) if parameters["texts"]["pulseTutorial2"]: pulse2 = visual.TextStim( parameters["win"], height=parameters["textSize"], pos=(0.0, 0.2), text=parameters["texts"]["pulseTutorial2"], ) pulse3 = visual.TextStim( parameters["win"], height=parameters["textSize"], pos=(0.0, -0.2), text=parameters["texts"]["pulseTutorial3"], ) pulse2.draw() pulse3.draw() press.draw() parameters["win"].flip() core.wait(1) waitInput(parameters) pulse4 = visual.TextStim( parameters["win"], height=parameters["textSize"], pos=(0.0, 0.3), text=parameters["texts"]["pulseTutorial4"], ) pulse4.draw() parameters["handSchema"].draw() parameters["win"].flip() core.wait(1) # Record number nFinger = "" while True: # Record new key key = event.waitKeys( keyList=[ "1", "2", "3", "4", "5", "num_1", "num_2", "num_3", "num_4", "num_5", ] ) if key: nFinger += [s for s in key[0] if s.isdigit()][0] # Save the finger number in the task parameters dictionary parameters["nFinger"] = nFinger core.wait(0.5) break # Heartrate recording recording = visual.TextStim( parameters["win"], height=parameters["textSize"], pos=(0.0, 0.3), text=parameters["texts"]["Tutorial2"], ) recording.draw() parameters["heartLogo"].draw() press.draw() parameters["win"].flip() core.wait(1) waitInput(parameters) # Show reponse icon listenIcon = visual.TextStim( parameters["win"], height=parameters["textSize"], pos=(0.0, 0.3), text=parameters["texts"]["Tutorial3_icon"], ) parameters["heartLogo"].draw() listenIcon.draw() press.draw() parameters["win"].flip() core.wait(1) waitInput(parameters) # Response instructions listenResponse = visual.TextStim( parameters["win"], height=parameters["textSize"], pos=(0.0, 0.0), text=parameters["texts"]["Tutorial3_responses"], ) listenResponse.draw() press.draw() parameters["win"].flip() core.wait(1) waitInput(parameters) # Run training trials with feedback parameters["oxiTask"].setup().read(duration=2) for i in range(parameters["nFeedback"]): # Ramdom selection of condition condition = np.random.choice(["More", "Less"]) alpha = -20.0 if condition == "Less" else 20.0 _ = trial( parameters, alpha, "Intero", feedback=True, confidenceRating=False, ) # If extero conditions required, show tutorial. if parameters["ExteroCondition"] is True: exteroText = visual.TextStim( parameters["win"], height=parameters["textSize"], pos=(0.0, -0.2), text=parameters["texts"]["Tutorial3bis"], ) exteroText.draw() parameters["listenLogo"].draw() press.draw() parameters["win"].flip() core.wait(1) waitInput(parameters) exteroResponse = visual.TextStim( parameters["win"], height=parameters["textSize"], pos=(0.0, 0.0), text=parameters["texts"]["Tutorial3ter"], ) exteroResponse.draw() press.draw() parameters["win"].flip() core.wait(1) waitInput(parameters) # Run 10 training trials with feedback parameters["oxiTask"].setup().read(duration=2) for i in range(parameters["nFeedback"]): # Ramdom selection of condition condition = np.random.choice(["More", "Less"]) alpha = -20.0 if condition == "Less" else 20.0 _ = trial( parameters, alpha, "Extero", feedback=True, confidenceRating=False, ) ################### # Confidence rating ################### confidenceText = visual.TextStim( parameters["win"], height=parameters["textSize"], text=parameters["texts"]["Tutorial4"], ) confidenceText.draw() press.draw() parameters["win"].flip() core.wait(1) waitInput(parameters) parameters["oxiTask"].setup().read(duration=2) # Run n training trials with confidence rating for i in range(parameters["nConfidence"]): modality = "Intero" condition = np.random.choice(["More", "Less"]) stim_intense = np.random.choice(np.array([1, 10, 30])) alpha = -stim_intense if condition == "Less" else stim_intense _ = trial(parameters, alpha, modality, confidenceRating=True) # If extero conditions required, show tutorial. if parameters["ExteroCondition"] is True: # Run n training trials with confidence rating for i in range(parameters["nConfidence"]): modality = "Extero" condition = np.random.choice(["More", "Less"]) stim_intense = np.random.choice(np.array([1, 10, 30])) alpha = -stim_intense if condition == "Less" else stim_intense _ = trial( parameters, alpha, modality, confidenceRating=True, ) ################# # End of tutorial ################# taskPresentation = visual.TextStim( parameters["win"], height=parameters["textSize"], text=parameters["texts"]["Tutorial5"], ) taskPresentation.draw() press.draw() parameters["win"].flip() core.wait(1) waitInput(parameters) # Task taskPresentation = visual.TextStim( parameters["win"], height=parameters["textSize"], text=parameters["texts"]["Tutorial6"], ) taskPresentation.draw() press.draw() parameters["win"].flip() core.wait(1) waitInput(parameters)
[docs]def responseDecision( this_hr, parameters: dict, feedback: bool, condition: str, ) -> Tuple[ float, Optional[float], bool, Optional[str], Optional[float], Optional[bool] ]: """Recording response during the decision phase. Parameters ---------- this_hr : psychopy sound instance The sound .wav file to play. parameters : dict Parameters dictionary. feedback : bool If `True`, provide feedback after decision. condition : str The trial condition [`'More'` or `'Less'`] used to check is response is correct or not. Returns ------- responseMadeTrigger : float Time stamp of response provided. responseTrigger : float Time stamp of response start. respProvided : bool `True` if the response was provided, `False` otherwise. decision : str or None The decision made ('Higher', 'Lower' or None) decisionRT : float Decision response time (seconds). isCorrect : bool or None `True` if the response provided was correct, `False` otherwise. """ from psychopy import core, event, visual print("...starting decision phase.") decision, decisionRT, isCorrect = None, None, None responseTrigger = time.time() if parameters["device"] == "keyboard": this_hr.play() clock = core.Clock() responseKey = event.waitKeys( keyList=parameters["allowedKeys"], maxWait=parameters["respMax"], timeStamped=clock, ) this_hr.stop() responseMadeTrigger = time.time() # Check for response provided by the participant if not responseKey: respProvided = False decision, decisionRT = None, None # Record participant response (+/-) message = visual.TextStim( parameters["win"], height=parameters["textSize"], text="Too late" ) message.draw() parameters["win"].flip() core.wait(1) else: respProvided = True decision = responseKey[0][0] decisionRT = responseKey[0][1] # Read oximeter parameters["oxiTask"].readInWaiting() # Feedback if feedback is True: # Is the answer Correct? isCorrect = True if (decision == condition) else False if isCorrect is False: acc = visual.TextStim( parameters["win"], height=parameters["textSize"], color="red", text="False", ) acc.draw() parameters["win"].flip() core.wait(2) elif isCorrect is True: acc = visual.TextStim( parameters["win"], height=parameters["textSize"], color="green", text="Correct", ) acc.draw() parameters["win"].flip() core.wait(2) if parameters["device"] == "mouse": # Initialise response feedback slower = visual.TextStim( parameters["win"], height=parameters["textSize"], color="white", text=parameters["texts"]["slower"], pos=(-0.2, 0.2), ) faster = visual.TextStim( parameters["win"], height=parameters["textSize"], color="white", text=parameters["texts"]["faster"], pos=(0.2, 0.2), ) slower.draw() faster.draw() parameters["win"].flip() this_hr.play() clock = core.Clock() clock.reset() parameters["myMouse"].clickReset() buttons, decisionRT = parameters["myMouse"].getPressed(getTime=True) while True: buttons, decisionRT = parameters["myMouse"].getPressed(getTime=True) trialdur = clock.getTime() parameters["oxiTask"].readInWaiting() if buttons == [1, 0, 0]: decisionRT = decisionRT[0] decision, respProvided = "Less", True slower.color = "blue" slower.draw() parameters["win"].flip() # Show feedback for .5 seconds if enough time remain = parameters["respMax"] - trialdur pauseFeedback = 0.5 if (remain > 0.5) else remain core.wait(pauseFeedback) break elif buttons == [0, 0, 1]: decisionRT = decisionRT[-1] decision, respProvided = "More", True faster.color = "blue" faster.draw() parameters["win"].flip() # Show feedback for .5 seconds if enough time remain = parameters["respMax"] - trialdur pauseFeedback = 0.5 if (remain > 0.5) else remain core.wait(pauseFeedback) break elif trialdur > parameters["respMax"]: # if too long respProvided = False decisionRT = None break else: slower.draw() faster.draw() parameters["win"].flip() responseMadeTrigger = time.time() this_hr.stop() # Check for response provided by the participant if respProvided is False: # Record participant response (+/-) message = visual.TextStim( parameters["win"], height=parameters["textSize"], text=parameters["texts"]["tooLate"], color="red", pos=(0.0, -0.2), ) message.draw() parameters["win"].flip() core.wait(0.5) else: # Is the answer Correct? isCorrect = True if (decision == condition) else False # Feedback if feedback is True: if isCorrect == 0: textFeedback = parameters["texts"]["incorrectResponse"] else: textFeedback = parameters["texts"]["correctResponse"] colorFeedback = "red" if isCorrect == 0 else "green" acc = visual.TextStim( parameters["win"], height=parameters["textSize"], pos=(0.0, -0.2), color=colorFeedback, text=textFeedback, ) acc.draw() parameters["win"].flip() core.wait(1) return ( responseMadeTrigger, responseTrigger, respProvided, decision, decisionRT, isCorrect, )
[docs]def confidenceRatingTask( parameters: dict, ) -> Tuple[Optional[float], Optional[float], bool, Optional[float]]: """Confidence rating scale, using keyboard or mouse inputs. Parameters ---------- parameters : dict Parameters dictionary. """ from psychopy import core, visual print("...starting confidence rating.") # Initialise default values confidence, confidenceRT = None, None if parameters["device"] == "keyboard": markerStart = np.random.choice( np.arange(parameters["confScale"][0], parameters["confScale"][1]) ) ratingScale = visual.RatingScale( parameters["win"], low=parameters["confScale"][0], high=parameters["confScale"][1], noMouse=True, labels=parameters["labelsRating"], acceptKeys="down", markerStart=markerStart, ) message = visual.TextStim( parameters["win"], height=parameters["textSize"], text=parameters["texts"]["Confidence"], ) # Wait for response ratingProvided = False clock = core.Clock() while clock.getTime() < parameters["maxRatingTime"]: if not ratingScale.noResponse: ratingScale.markerColor = (0, 0, 1) if clock.getTime() > parameters["minRatingTime"]: ratingProvided = True break ratingScale.draw() message.draw() parameters["win"].flip() confidence = ratingScale.getRating() confidenceRT = ratingScale.getRT() elif parameters["device"] == "mouse": # Use the mouse position to update the slider position # The mouse movement is limited to a rectangle above the Slider # To avoid being dragged out of the screen (in case of multi screens) # and to avoid interferences with the Slider when clicking. parameters["win"].mouseVisible = False parameters["myMouse"].setPos((np.random.uniform(-0.25, 0.25), 0.2)) parameters["myMouse"].clickReset() message = visual.TextStim( parameters["win"], height=parameters["textSize"], pos=(0, 0.2), text=parameters["texts"]["Confidence"], ) slider = visual.Slider( win=parameters["win"], name="slider", pos=(0, -0.2), size=(0.7, 0.1), labels=parameters["texts"]["VASlabels"], granularity=1, ticks=(0, 100), style=("rating"), color="LightGray", flip=False, labelHeight=0.1 * 0.6, ) slider.marker.size = (0.03, 0.03) clock = core.Clock() parameters["myMouse"].clickReset() buttons, confidenceRT = parameters["myMouse"].getPressed(getTime=True) while True: parameters["win"].mouseVisible = False trialdur = clock.getTime() buttons, confidenceRT = parameters["myMouse"].getPressed(getTime=True) # Mouse position (keep in in the rectangle) newPos = parameters["myMouse"].getPos() if newPos[0] < -0.5: newX = -0.5 elif newPos[0] > 0.5: newX = 0.5 else: newX = newPos[0] if newPos[1] < 0.1: newY = 0.1 elif newPos[1] > 0.3: newY = 0.3 else: newY = newPos[1] parameters["myMouse"].setPos((newX, newY)) # Update marker position in Slider p = newX / 0.5 slider.markerPos = 50 + (p * 50) # Check if response provided if (buttons == [1, 0, 0]) & (trialdur > parameters["minRatingTime"]): confidence, confidenceRT, ratingProvided = ( slider.markerPos, clock.getTime(), True, ) print( f"... Confidence level: {confidence}" + f" with response time {round(confidenceRT, 2)} seconds" ) # Change marker color after response provided slider.marker.color = "green" slider.draw() message.draw() parameters["win"].flip() core.wait(0.2) break elif trialdur > parameters["maxRatingTime"]: # if too long ratingProvided = False confidenceRT = parameters["myMouse"].clickReset() # Text feedback if no rating provided message = visual.TextStim( parameters["win"], height=parameters["textSize"], text="Too late", color="red", pos=(0.0, -0.2), ) message.draw() parameters["win"].flip() core.wait(0.5) break slider.draw() message.draw() parameters["win"].flip() ratingEndTrigger = time.time() parameters["win"].flip() return confidence, confidenceRT, ratingProvided, ratingEndTrigger