systole.detection.rr_artefacts#
- systole.detection.rr_artefacts(rr: Union[List, ndarray], c1: float = 0.13, c2: float = 0.17, alpha: float = 5.2, input_type: str = 'rr_ms') Dict[str, ndarray] [source]#
Artefacts detection from RR time series using the subspaces approach proposed by Lipponen & Tarvainen (2019).
- Parameters
- rr
1d numpy array of RR intervals (in seconds or miliseconds) or peaks vector (boolean array).
- c1
Fixed variable controling the slope of the threshold lines. Default is 0.13.
- c2
Fixed variable controling the intersect of the threshold lines. Default is 0.17.
- alpha
Scaling factor used to normalize the RR intervals first deviation.
- input_type
The type of input vector. Defaults to “rr_ms” for vectors of RR intervals, or interbeat intervals (IBI), expressed in milliseconds. Can also be a boolean vector where 1 represents the occurrence of R waves or systolic peakspeaks vector “rr_s” or IBI expressed in seconds.
- Returns
- artefacts
Dictionary storing the parameters of RR artefacts rejection. All the vectors outputed have the same length as the provided RR time serie:
- subspace1np.ndarray
The first dimension. First derivative of R-R interval time serie.
- subspace2np.ndarray
The second dimension (1st plot).
- subspace3np.ndarray
The third dimension (2nd plot).
- mRRnp.ndarray
The mRR time serie.
- ectopicnp.ndarray
Boolean array indexing probable ectopic beats.
- longnp.ndarray
Boolean array indexing long RR intervals.
- shortnp.ndarray
Boolean array indexing short RR intervals.
- missednp.ndarray
Boolean array indexing missed RR intervals.
- extranp.ndarray
Boolean array indexing extra RR intervals.
- threshold1np.ndarray
Threshold 1.
- threshold2np.ndarray
Threshold 2.
Notes
This function will use the method proposed by [1] to detect ectopic beats, long, shorts, missed and extra RR intervals.
References
- 1
Lipponen, J. A., & Tarvainen, M. P. (2019). A robust algorithm for heart rate variability time series artefact correction using novel beat classification. Journal of Medical Engineering & Technology, 43(3), 173-181. https://doi.org/10.1080/03091902.2019.1640306
Examples
>>> from systole import simulate_rr >>> from systole.detection import rr_artefacts >>> rr = simulate_rr() # Simulate RR time series >>> artefacts = rr_artefacts(rr) >>> print(artefacts.keys()) dict_keys(['subspace1', 'subspace2', 'subspace3', 'mRR', 'ectopic', 'long', 'short', 'missed', 'extra', 'threshold1', 'threshold2'])